TWCP Physics Calendar

Superconducting circuits, simplified

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption of the massive data centers that power the Internet's most popular sites.

Mapping the relationship between two quantum effects known as topological insulators

At very low temperatures and under strong magnetic fields, thin films of semiconducting materials can display a phenomenon known as the quantum Hall (QH) effect, which can allow electrons to flow with no energy loss. In a newly discovered class of materials known as topological insulators, the same state can be achieved without an external magnetic field, spurring interest in the development of low-power electronics and other promising applications.

Boeing Concludes Commercial Crew Space Act Agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability (CCiCap) Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket.

NASA Partners with Leading Technology Innovators to Enable Future Exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative (ECI) pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions.

New Commercial Rocket Descent Data May Help NASA with Future Mars Landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station in Florida. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars.

Multiferroic material displays a novel spin structure that allows light to travel in only one direction

A research team led by Youtarou Takahashi from the RIKEN Center for Emergent Matter Science has demonstrated a novel phenomenon called magnetochiral dichroism, which prevents light from propagating parallel or antiparallel to the direction of magnetization. The discovery, which was made in the multiferroic 'helimagnet' gallium-doped copper iron oxide, could lead to new possibilities in the control of light at gigahertz and terahertz frequencies.

Superconducting circuits, simplified

New circuit design could unlock the power of experimental superconducting computer chips.

Atomic trigger shatters mystery of how glass deforms

A new study has cracked one mystery of glass to shed light on the mechanism that triggers its deformation before shattering. Glass hangs in a metastable state in which the energy of the system is higher than the lowest-energy state the system could assume, a crystalline state. But its state is stable enough at room temperature to last a human lifetime.

Protons hog the momentum in neutron-rich nuclei

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using data from nuclear physics experiments carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility, researchers have now shown for the first time that this phenomenon exists in nuclei heavier than carbon, including aluminum, iron and lead.

Cosmic jets of young stars formed by magnetic fields

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. Now, for the first time ever, an international team of researchers has successfully tested a new model that explains how magnetic fields form these emissions in young stars. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were part of this research. Their findings have been published in the journal Science.


Subscribe to TWCP Physics RSS